Argentina, capas, COSMOS, Diseño 3D, Educación, FDM, Guía, Laminado, Material de estudio, modelos 3D, Relleno, Software

Guía de impresión 3D: Tema 3- Modelado

Tanto las instituciones educativas como los ámbitos de educación no formal están incorporando la tecnología de impresión 3D como recurso didáctico y como materia de enseñanza.
 
Por ese motivo, en Trimaker creamos una Guía de impresión 3D para educadores que puede aplicarse y adaptarse a todos los niveles de la enseñanza.
 
En esta edición hablaremos sobre el modelado. Aquí brindamos una versión resumida del contenido de la guía que sirve como referencia y eje para comenzar a hablar sobre este tema. Quienes deseen la versión completa pueden contactarnos a [email protected]
  
TEMA 3
 

MODELADO
 
Los modelos 3D son representaciones matemáticas de cualquier objeto tridimensional (real o ficticio) en un software 3D. Son una parte esencial de la construcción de gráficos tridimensionales y sin ellos no habría animaciones por computadora. No existirían Toy Story ni Wall-E, no tendríamos juegos en 3D ni películas de Transformers (al menos, en la forma en que los conocemos hoy en día). Cada objeto, personaje, escena de una película animada por computadora o videojuego se compone de modelos en 3D.
 
El proceso de crear y dar forma a un modelo 3D se conoce como modelado 3D. Existen tres maneras de obtener un modelado:
 

Descargarlo de una biblioteca on-line:
 
Una de las mejores maneras de comenzar a relacionarse con este tipo de archivos es encontrar un objeto en la web y utilizarlo como referencia. Thingiverse y GrabCAD son grandes lugares de referencia para descargar objetos y conseguir inspiración.
 
Escanear un objeto existente:
 
Escanear un objeto también permite obtener un modelado sin tener que diseñar la pieza. Hoy existen muchas maneras de digitalizar objetos, desde aplicaciones que utilizan la cámara de nuestros celulares, hasta escaners de altísima precisión, pasando por accesorios para tabletas. Una vez obtenido el escaneo se puede imprimir como está, escalarlo o modificarlo.
 
Diseñar la pieza a medida:
 
A esta etapa se la llama modelado y consiste en dar forma a los objetos usando un software. Hay una serie de técnicas, métodos o lógicas de modelado 3D, cada una de las cuales sirve para lograr modelados diferentes. A continuación explicaremos algunas de ellas y sus aplicaciones.

 

Lógicas de modelado
 
Geometría sólida constructiva: Permite modelar formas complejas combinando volúmenes simples. Este tipo de modelado, usado por ejemplo en los softwares Rhinoceros y Tinkercad, permite obtener objetos simples o bases sobre las que realizar un diseño más detallado.
 
Modelado por curvas: En este tipo de modelado las superficies del modelo están definidas por curvas e influenciadas por puntos de control que permiten modificarlas. Puede hacerse con el software Rhinoceros y se usa para objetos con superficies muy complejas y orgánicas manteniendo una cierta rigurosidad técnica.
 
Diseño paramétrico: El término “paramétrico” se refiere al uso de parámetros o variables que permiten definir el modelo final. Los parámetros pueden ser tanto numéricos (longitudes, diámetros, ángulos, etc.) como geométricos (tangente, paralelo, concéntrico, etc). Este tipo de modelado, que se usa en producción y en diseño estructural, puede hacerse con los softwares Solidworks, CATIA y Grasshopper.
 

Escultura digital: Es el modelado con un software específico que ofrece herramientas que simulan la manipulación de arcilla. Es posible comprimir, estirar, generar texturas o alisar, entre muchas otras. Se usa para animación y diseño de personajes.
 
Software específico: Existen también programas diseñados específicamente para ciertas industrias. Por ejemplo, en diseño textil hay programas que permiten diseñar un molde y luego verlo realizado en 3D en distintas telas.
 

 

Softwares de pre-impresión
 
A los programas de preparación se los llama ‘slicers’, que se traduce del inglés como cortadores o laminadores. Esto se debe a que la pieza es cortada en “rodajas”, llamadas capas, a las que luego convertirá en caminos lineales.
 
Uno de los grandes beneficios de la impresión 3D es poder definir los parámetros en cada objeto según sus requisitos. Una definición de 0,1 mm se utilizará con poca frecuencia y para piezas con gran cantidad de detalle, mientras que para la mayoría de los modelos una definición de 0,3 mm dará un resultado muy bueno.
 
 
Parámetros de impresión
 
Los parámetros de impresión van a definir las características que luego tendrá la pieza final. Su definición, estructura interna, material, etc. En muchas impresoras, como la Trimaker Cosmos, pueden modificarse algunos de estos parámetros durante la impresión. Por ejemplo, modificar la temperatura en un día muy caluroso o bajar la velocidad si se observa que está imprimiendo demasiado rápido.
 
Espesor de capa
 
Es la altura que tendrá cada capa. Se mide en micras o milímetros. Suele ir desde 100 micras (0,1 mm) a 300 micras (0,3 mm). La definición es uno de los factores que más afecta al tiempo de impresión, ya que define la cantidad de capas que tendrán que realizarse para obtener la pieza. Si tenemos una definición de 0,3 mm serán necesarias menos capas y, por ende, menos tiempo de impresión. Al contrario, si tenemos una altura de capa de 0,1 mm se necesitarán el triple de capas y de tiempo.
 
Capa
 
Las capas se componen de tres elementos: la pared exterior, la pared o paredes interiores, y el relleno. A lo largo de la impresión el extrusor depositará el material generando estos tres elementos.
 
impresión 3d modelado pared relleno boquilla guía manual maestros educación
 
Pared
 
Las paredes son perímetros que siguen el borde de la pieza. Cada uno tendrá un ancho determinado dado por el diámetro de la boquilla.
 
Relleno
 
Cuando hablamos de relleno nos referimos a la estructura interna de la pieza. Uno de los beneficios que da la impresión 3D es el de poder definir cómo será esta estructura. Podemos elegir tanto el porcentaje de material que tendrá el relleno como el diseño del patrón que se usará. De esta manera, la estructura interna de cada pieza se decidirá según sus aplicaciones y las características que queremos que tenga. La mayoría de las impresiones no son sólidas, están impresas con un patrón interior que puede variar dependiendo del destino que se le vaya a dar al objeto. Podrá usarse un bajo porcentaje de relleno para un objeto meramente decorativo o uno más alto para una pieza que requiera resistencia mecánica.
 
impresión 3d manual educar trimaker relleno qué es
 
Posición
 
Debido a que el modelo será impreso capa por capa, la orientación de la impresión tendrá un impacto en la definición, la calidad y la resistencia de la pieza. Para posicionar una pieza correctamente recomendamos orientar el objeto teniendo en cuenta dos cosas: que la base de apoyo sea el lugar más plano de la pieza y que los detalles importantes de la pieza queden verticales (en el eje z), ya que suelen salir más prolijos.
 
impresión 3d posición pieza guía educadores maestros docentes gratis trimaker
 
Soportes
 
Cuando un modelo tiene salientes, las capas que no están directamente soportadas en una capa inferior pueden caerse, generando imperfecciones. Para evitarlo, debemos construir soportes que actúen como base de las capas que conforman los salientes del modelo.
 
Para poder entender cuándo se necesitan soportes y cuándo no, usaremos como ejemplo las letras “Y”, “H” y “T”. En el caso de la “Y”, las salientes se abren a un ángulo mayor a 60°, de manera que cada capa se desfasa muy poco respecto de la anterior. Por lo tanto, a pesar de tener salientes, las capas tendrán soporte suficiente para construirse sin problemas y no se tendrá que usar soportes extras. En el caso de la “H” vamos a usar soportes en el puente solamente cuando la distancia sea mayor a 7 mm. En una distancia menor no será necesario usarlos porque no habrá riesgos. Llamaremos a estas excepciones “puentes”. En el caso de la “T”, vamos a necesitar usar soportes sí o sí, ya que no hay capas inferiores sobre las que se puedan construir los brazos, que tienen una extensión mayor a 7 mm.
 
gratis trimaker manual docentes educación soportes impresión 3d
 
Temperatura
 
Este parámetro se define según el material a utilizar. Existen dos parámetros de temperatura. La del extrusor, que es la temperatura a la que funde el material, y la de la placa de construcción, que sirve para que el material se adhiera a la plataforma. Por ejemplo, en el caso del PLA, el extrusor estará entre los 190° C – 200° C y la placa estará a 60° C.
 
 
Consejos
 
A la hora de diseñar una pieza para ser impresa en 3D sugerimos tener en cuenta los consejos y límites que enumeramos aquí.

 
 
GUÍA DE IMPRESIÓN 3D PARA EDUCADORES
 
TEMA 1: ¿QUÉ TECNOLOGÍAS EXISTEN?
 
TEMA 2: ¿QUÉ ES FDM?
 
TEMA 3: MODELADO
 
TEMA 4: SOFTWARE
 
Para seguir formándose, sugerimos la lectura de los siguientes artículos:
 
El primer libro sobre impresión 3D en español.
 
Impresión 3D desde cero.
 
¿Cuánto cuesta imprimir algo en 3D?
 
Si te interesa realizar un curso, aquí encontrarás información al respecto.

Autor


Avatar